CO$_2$ Reduction
Comparison of Belt and Chain Front End Drive for a Passenger Car High Pressure Pump

Pietro Bianchi - Leonardo Engineers for Integration
Vincenzo De Carlo - Bosch CVIT
• Fuel Economy – Direct contribution
 • Parasitic losses
 • Friction and Damping losses
 • Hub loads and bearing losses

• Fuel Economy – Indirect contribution
 • Injection Dynamics
 • Torque oscillation
 • Drive elongation
 • Damping of C/S torsional vibrations
 • Pressure build-up rate in common rail
Hydraulics & Mechanics

- **Conventional simulation**
 - Mechanic model excited by imposed delivery pressure profile on plunger or torque measured data
 - Hydraulic simulation with imposed rigid motion of plunger or pulley

- **Integrated model**
 - Hydraulic and Mechanic co-simulation
 - Pressure build-up function of computed elastic motion of plunger
 - Mechanical model excitation through simulated pressure at plunger
 - Interaction allowed
 - Imposed crankshaft motion, including torsional vibrations
Simulation Methodology

- **Mechanical Model – VALDYN**
 - Detailed pump dynamic model
 - Used worldwide since decades for belt and chain drive modeling

- **Hydraulic model - AMESim**
 - Developed by Bosch
 - Modified to be integrated into a co-simulation;

- **Parent Model – Simulink**
 - Monitors passage of results between models
 - Coordinates computation time
 - Uses co-simulation libraries available in both environments
Validation methodology

- Three sources of experimental data (belt)
 - HPP torque measurement @ test rig;
 - Instrumented HPP on engine @ OEM production plant;
 - Specific engine test at Bosch CVIT

- Specific instrumentation for:
 - Belt slap
 - HPP hub load and torque
 - HPP housing vibration
 - Injection system characterization (low and high pressure circuits)
Pump Model

- **Cam – Roller contact**
 - EHD Theory for oil film thickness and friction coefficient assessment
 - Fuel piezo-viscosity parameters
 - Statistic asperity contact model to define friction torque (GWT model)
 - Retainer spring modeled

- **Spring**
 - Multi-mass model (10 segments per coil)
 - Coil contacts and coil surge modeled

- **Shaft**
 - Two flexible elements
 - Two pivot bearing with constant friction coefficient;
 - In the complete model with belt, an additional front cantilever part and toothed pulley are included
Pump Model Validation

• Two Phases
 • Preliminary
 • Stand-alone model, imposed pressure profile from previous injection system simulation;
 • Compared with available pump test rig data;
 • Use to validate torque and friction behavior
 • Final
 • Complete model with belt drive
 • Integration with hydraulic model
 • Compared with engine ad-hoc measurements

• Model evolution
 • @ part load the throttling of the pump by the Metering Unit can be predicted only with the integrated model
Belt Model

• Model
 • Succession of beams with profiles entering the grooves of the pulleys
 • Both contact friction and internal damping modeled
 • Automatic pivoting tensioner

• Layout
 • Corresponding to an engine available for tests and on which past engineering experience was available

• Components
 • Direct information from suppliers was not available
 • Information derived from purchased spare parts
 • Single camshaft and valve drive included
 • Belt lay-out specific and derived from existing lay-outs
 • Information collected either from spare parts and experimental results
Chain Model

- **Model**
 - Series of partially elastic links with both friction and damping at elements' interface

- **Lay-out**
 - Designed from scratch
 - Concept derived from an existing engine

- **Lower Chain**
 - Step 9,525 mm
 - 72 links
 - 25 teeth sprockets
 - Specs: IWIS G68 HR-4

- **Upper Chain**
 - Step 9,525 mm
 - 90 links
 - 21/42 teeth sprockets
 - Specs: IWIS G67 HR-6

- **Camshaft**
 - Model with one single camshaft to allow for direct comparison with belt drive
Chain Model Optimization

- **Parameters**
 - Tensioners preload
 - Tensioners leakage
 - Guide friction

- **Criteria**
 - Minimum friction in dynamically stable conditions
 - Minimum attainable friction coefficient for guides
Hydraulic Model Integration

• Hierarchy
 • Simulink model is parent to both VALDYN and AMESim models
 • S/link coordinates both time step definition and synchronization

• Visualization
 • Simulink terminals allow for constant monitoring of the run

• Simulation time
 • Approx. 5 engine cycles to achieve convergence
 • Elapsed time: 6h to 8h
Belt Model Validation

• Hub Load Comparison
 • Very dispersed results both in numerical and experimental results, no cyclic repetition;
 • Comparison of frequency distribution curve is used;
 • Very good matching at various speed is obtained after tuning of tensioner characteristics;
Belt Model Validation

• Belt flap Comparison
 • Simulation results matched HSC measurements in a fair good fashion by different speeds;
 • Computed amplitudes generally exceeded measured ones, showing a lower damping than real;
 • Finer definition of belt characteristic for future simulation can be envisaged;
Simulation Results

• Part Load operation
 • Changes at Metering Unit current correctly result in a lower filling quote of the delivery plunger;
 • This effect can be seen both on the plunger pressure curves and in the flow out of the delivery valve
 • Note zero delivery situation at high throttling;
• Parasitic Losses
 • Power absorption higher for chain drive
 • Optimization could reduce difference but not reverse the result;
 • Belt Losses mainly from internal damping, increase with speed and affected by resonances
 • Chain drive main contribution from friction
 • High speed gasoline engine may experience opposite results;
Simulation Results

- **Dynamic Behavior**
 - **Belt:**
 - Mainly stochastic behavior, oscillation overwhelms cyclic load
 - **Chain:**
 - Clearly cyclic repeatable oscillation
 - Two predominant frequency:
 - High frequency teeth meshing
 - Low frequency energy bouncing due to elastic behavior of the drive
Pump Dynamics

• Phase shift
 • Higher belt deformation lead to higher phase shifts
 • HPP pump torque oscillation is the driving force
 • Such phase shift appears to have no significant influence on injections parameters in a HPCR Systems
Main pump spring surge

• Spring dynamics
 • Forces at different portions of spring coils have been analyzed
 • Oscillation around static force is a consequence of the excitation of spring modal frequencies
 • The repeatable chain meshing frequency excites spring surge at certain speeds
 • Belt drive influence on spring dynamics is negligible
Main pump spring surge

- **Spring surge (Chain Drive)**
 - Spring coil oscillation near spring basis lead to impingements of the first coil with dead ones
 - Such impingement might result into higher vibration level of the HPP housing, hence structure borne noise and delivery pressure oscillation.
Summary and Conclusions

• Simulation
 • Use of different codes co-simulation can efficiently deepen the analysis into the dynamics of injection system unveiling interaction between mechanical and hydraulic engineering aspects;

• Chain vs. Belt Front End drive
 • For high speed diesel engines for passenger car, a belt drive shows marginal advantages in friction reduction;
 • Chain dynamics may have an impact on secondary dynamics of HPP components, in particular on the return spring dynamics
Q & A session

Q & A
Thank you

• For any further information:
 • pietro.bianchi@leonardointegration.com