

An Automatic procedure for the optimization of the pin bore profile for highly loaded pistons

Company Introduction

- Duraldur is a small-medium company located in the north of Italy, on the Garda Lake
- Duraldur specialized in the productions of casted and forged pistons, air-cooled cylinder, centrifugated liners and made of alluminium forged liners mainly for internal combustion engines
- The company was estabilished in 1951 and is familyrun business

Summary

This lead to a potential loss of power density that is compensated thanks to a painful increasing of combustion pressure and the adoption of turbocharging;

GREAT IMPACT ON PISTON - PIN CONTACT

HOW ACHIEVE THE BEST SOLUTION????

Optimization strategy

- Thanks to a strict cooperation with Leonardo Engineering we developed a fully automatic tool to get the best piston-pin contact
- The target of this automatic tool is to define the best pin bore profile to level out the contact presure
- Starting point for simulation
 - Based on previous experience
 - May influnce search result
- Gap contact force
 - Requires computation of average pressure
 - Specific Python script available
- Target function: -
 - Max predicted value of contact pressure not reliable, because it may be influenced by numerical oscillation
 - Max quadratic variance of pressure
 - Two options, both tested:
 - Computed on the upper half of the pin bore
 - Computed only in contact areas
 - Computed only in contact areas

Search Method

Two areas of choice

- Derivative-based (Jacobian & Hessian matrix)
 - Faster but sensible to noise (numerical or measured)
 - May be locked into local minimum
 - · Two methods tested
- Non Derivative-based (s.c. Global search)
 - Much stabler but slower
 - May not converge in reasonable time
 - · Two methods tested
- Both types of methods tested
 - Derivative based converged to probable absolute minimum with both options for target functions
 - Non-derivative based were slower and remained far from best options found by derivative based ones.

Optimization Strategy

Output

- Value of the parameters corresponding to Best Found Value (BFV)
- Plot file for visualization
- Target function at BFV
- FME model (rough mesh, with BFV gap configuration) and result

- In the last two years we designed and developed, in partnership with KOHLER ENGINES Reggio Emilia, a new piston for a diesel engine with increased power and torque.
- Following the first test phase, we stated that the piston-pin contact was ok, anyway an improvement was possible.
- For this reason we performed an optimization assessment to improve the actual situation.

- At the first step we checked the existing situation
- Hereafter we perform an optimization analysis
- Finally we compared the different output (profile and stress)

The optimized profile requires an oval development @90°

Future Development

Process

- Review parameters definition
- Add version with conical taper
- Add conrod profile to optimization procedure
- Generate interface GUI for non-python users
- Develop python script to view results in FEARCE
- Other optimization criteria (stresses, fatigue life)

Product

- Review analysis with finer mesh as original one
- Check cold piston pressure distribution (with reasonable cyclinder pressure!!)

