

HiL Tools – WAVE-RT

This workshop introduces WAVE-RT conversion process on real WAVE engine model, showing the recommended modelling techniques and example of HiL application

Date

17th Jan 2013

Report by Jiri Navratil and Martin Horacek

Delivering Value Through Innovation & Technology

www.ricardo.com

Summary

• Aim:

- The aim of this seminar is to introduce a WAVE-RT conversion process on real WAVE engine model and its HiL implementation example and scheme
- The second aim it to show life demos of WAVE model run vs. WAVE-RT run

• Method:

- Ricardo Software WAVE validated full load model is converged to real time WAVE-RT model
- C++ (MS Visual Studio 2010) and Simulink are used to drive the WAVE-RT model

• Conclusions:

 WAVE-RT present state of art software code running real time or faster even on common PCs intended to be used for SiL and HiL applications

Introduction to WAVE-RT

WAVE-RT Background and Basic Information

- Tutorial + Help
- WAVE-RT vs. WAVE Unsupported Objects and Features
- WAVE Model Preparation
- WAVE-RT Model
- HiL Implementation
- Conclusions

WAVE-RT is simplified 1-D gas dynamic program intended to run real-time

- WAVE-RT is a real-time capable engine simulation solver, based on in-cycle modelling
- It has been developed to provide the real time link between thermodynamic solver RT and control system development and testing environments, including MATLAB/Simulink for Software-in-the-Loop (SiL) testing, Hardware-in-the-Loop (HiL) testing platforms, and even embedding real-time models in future ECUs
- WAVE-RT model is derived (created) from a donor WAVE model using geometry placed on WaveBuild canvas

WAVE could be described as a luxury car in 1-D gas dynamic simulation and WAVE-RT as a sport car

WAVE

- Luxury user friendly
- Lots of comfort and possibilities
- Good for long drives optimisations
- Slower and safe (stable)
- Nice view outside sensors, actuators, plot options

WAVE-RT

- Very fast and powerful
- Needs an experienced driver

WAVE-RT is not WAVE; both are different 1-D gas thermodynamic software codes with different solvers!

- Solver and modelling approach is simplified compared to WAVE to allow the model run as fast as possible
- User 'has to pay' for the speed by loosing some of the accuracy and user friendliness
- Designed to run within engine ECUs so the interface is similar what we can see at real engines
- All output parameters are crank angle dependent
 - No cycle average values
 - User has to average (apply filters)

• Still captures pressure waves and other 1-D gas phenomena correctly!

User has to expect slightly different results compared to baseline WAVE model since the solver is different

User normally needs 4 programs to be installed: WAVE, WAVE-RT, C++ compiler (e.g. Microsoft Visual Studio 2010) and MATLAB/Simulink

• Any other C program language compilers can be used

INTERNAL UNAPPROVED DRAFT

- Introduction to WAVE-RT
 - WAVE-RT Background and Basic Information
 - Tutorial + Help
 - WAVE-RT vs. WAVE Unsupported Objects and Features
- WAVE Model Preparation
- WAVE-RT Model
- HiL Implementation
- Conclusions

Every new user should go and read WAVE-RT Help and go through the basic tutorial at the beginning

1) Start > All Programs > Ricardo > WAVE > WAVE Help System

- 2) Help > WAVE-RT
- 3) Tutorial can be found in: WAVE Knowledge Center > Tutorials > Advanced > WAVE-RT

4) Go through the Preliminary Work chapter carefully

- The tutorial and WAVE preliminary work is prepared for 32-bit system mostly
- Several adjustments are needed for 64-bit systems

Tutorial + Help

The WAVE-RT Theory is explained in detail within Help: Help > WAVE-RT > Using WAVE-RT > WAVE-RT Theory

- The flow network solver at the core of WAVE-RT is based upon the <u>Quasi-Propagatory Model</u> (QPM) as described by <u>Cipollone and Sciarretta</u> in numerous publications
- The QPM model tracks only **three transport species** (air, fuel, and exhaust gas) as opposed to WAVE's five (fresh air, vapor fuel, burned air, burned fuel, and liquid fuel)
- The engine system is described by a series of **ducts** and **capacities**. The velocity is calculated at the mid-point of each duct, followed by the mass flow rate and energy flow rate. Flow propagates along the ducts in both directions allowing wave phenomena to be captured in the model
- The volume contained within the duct is split in two, with each half attributed to the adjacent capacity

! WAVE-RT Model has no discretization !

The mathematic discretization is represented by the model geometry

- Introduction to WAVE-RT
 - WAVE-RT Background and Basic Information
 - Tutorial + Help
 - WAVE-RT vs. WAVE Unsupported Objects and Features
- WAVE Model Preparation
- WAVE-RT Model
- HiL Implementation
- Conclusions

WAVE-RT does not have so many objects, sensors and actuators as WAVE

- Regarding missing objects compared to WAVE the aim for RT is to be as fast and as simple as
 possible so the calculation should not be slowed down by complicated objects
- WAVE-RT has no control strategy objects (Interpolation Maps, PID controllers, etc.) since it is driven by a driver where all the control strategy is presented
- Please have a look at Help for WAVE-RT supported:
 - Objects List: Help > WAVE-RT > WAVE-RT Files > The model_rt.c File
 - Sensor Table: Help > WAVE-RT > Using WAVE-RT > Creating a WAVE-RT Model > Exporting the WAVE-RT Model from WaveBuild
 - Actuator Table: Help > WAVE-RT > Using WAVE-RT > Creating a WAVE-RT Model > Exporting the WAVE-RT Model from WaveBuild

WAVE sensor type	WAVE-RT address assigned during export when attached to:							
				Turbine/Compressor				
Equivalence Ratio			cy[n] Phi					
Exhaust Gas Mass Fraction	duc[n] Z_DuctExh	cap[n] Z_CapExh	cyl[n] Z_CylExh					
FMEP					theModel FMEP_CF			
Head Coolant-Side Wall Temperature			cyl[n].T_WalHeadOuter					
Head Gas-Side Wall Temperature			cyl(n).T_WallHeadInner					
Heat Flow		cap(n) Q_Conv	cyl[n] Q_Conv					
Heat Transfer Coefficient	duc[n] H_Duct	cap[n] H_Junc0	cyl[n].H_CylWall					
Inner Wall Temperature	duc[n].T_Overwallione	canini.T_JunrWarnner		wood				
Liner Coolant-Side Wall Temperature	l d D		S INTER LI BE N T	wea	1			
Liner Gas-Side Wall Temperature			cyf[n] T_WallLinerInner					
Mass Flow	duc[n].W_Duct		CODO	Iduc[n].W_Duct_Turbo				
Outer Wall Temperature	duc[n] T_DuctWallOuter	capitors of newall to	20K2					
Piston Gas-Side Wall Temperature			cyl[n].T_WallPistonInner					
Piston Oil-Side Wall Temperature			cyl[n].T_WallPistonOuter					
Pressure	cap[n].P_Cap	cap(n) P_Cap	cyl[n].P_Cyl					
Rack Position				tduc[n] X_Turb				
Rotational Position (rad or deg)			cyl[n] Theta_loc		theModel Theta			
Rotational Speed (rad/s or rpm)			theModel N_Eng	tduc[n] N_Turbo	theModel.N_Eng			
Temperature	duc[n].T_Duct	cap(n) T_Cap	cyl[n].T_Cyl					
Torque				tduc[n] Tg_Turbo	theModel Tg_Eng			
Velocity	duc[n].Vel_Flow							

There are number of WAVE objects which have to be re-modelled (simplified) before the model can be properly converted to WAVE-RT

 Throttles and Check valves has to be turned into simple orifices

- Twin entry turbines
- Discretization
 - Model geometry changes might be necessary
- Thermocouples are not supported
- Burn Profile combustion
 - DI Wiebe, SI Wiebe or Multi-Component Wiebe supported

X

There are several WAVE objects which have to be re-modelled (simplified) before the model can be properly converted to WAVE-RT

- Turbocharger has to have an inertia
- There are more object whose are not supported
 - User can easily check:

User has to be aware that some of components are modelled or calculated with different approach in WAVE-RT

- Multiple duct representation (Intercooler, Catalysts, DPF) is slightly different in RT compared to WAVE
 - There is no multiple duct in WAVE-RT the inner duct area is increase in WAVE-RT to be equal to multiple duct are in WAVE (done automatically during model export)
 - This is the reason that the pressure drop in WAVE-RT is usually underestimated compared to WAVE
 - The simple solution is to simplify the IC put an additional throttling downstream the intercooler

- The throttling orifice with e.g. diameter of 30 [mm] in WAVE will be giving slightly different pressure drop compared to the same orifice in RT – the reason is the modelling approach (capacities, ducts, ...) – see WAVE-RT Theory
 - It is recommended to prepare an actuator to the orifice diameter which can be adjusted to get the same pressure drop

Hints and Tips

User has to be aware that some of components are modelled or calculated with different approach in WAVE-RT

 WAVE-RT uses linear function for Gamma calculation dependent only on temperature inside of the cylinder (WAVE uses more enhanced method for estimating the gamma)

Gamma = KGAM*T_Cyl+GAM_PHI.

- Where KGAM and GAM_PHI are constants (can be manually adjusted in *model_*rt.c)
- T_Cyl is temperature within combustion chamber
- It is usually necessary to change HTVC (heat transfer multiplier when intake valves are closed) and THVO (heat transfer multiplier when intake valves are opened) in WAVE-RT to match the WAVE model results more precisely

• All the WAVE-RT inputs and outputs are in SI units!

 This is done for the compatibility with what is commonly used in real ECU strategies and to avoid confusions with units

WAVE-RT uses different mathematical solver compared to WAVE

- User has to keep in mind that WAVE-RT solver is completely different to WAVE
 - Often behaves as a real engine where e.g. every engine cycle in-cylinder pressure is slightly different even the solution is converged

- User should do an average of several in-cylinder pressures for fair comparison with WAVE similarly as it is done on test beds
- **RT is driven by time** (time in seconds on x-axis always) so if user has to calculate the crank angle if necessary
 - This is also complies to real engine ECU and their strategy where everything is based on time in seconds

Hints and Tips WAVE-RT Hints and Tips

- The WAVE-RT model is always created from the 1st WAVE case
 - Users should keep in his mind that only 1st case parameters setting will be exported
- WAVE-RT model is sensitive to time step
 - The proper time step should be calculated usually ~1deg CA
 - Following formula can be used: $t = \frac{\alpha}{6n}$, where α is crank angle [deg CA] and n is engine speed [rpm]
 - 1degCA @ 4000rpm can be calculated as t = 1/6/4000 = 4.16e-5sec
- The engine geometry should be as simplified as possible
 - Less components leads to higher computational speed
 - Dirty side ducts, air cleaner, clean side ducts should be removed if possible and the pressure depression adjusted using an orifice
 - Entire exhaust aftertreatement should be removed (no mufflers, DPF, CAT, DOC) and the back pressure should be increased by back pressure orifice
- All WAVE-RT angles are in radians!
 - Use conversion formula: 1rad = 1degCA * PI / 180

It is important to re-run the model in the current version and make sure that the results are unchanged

Once user starts to work in one WAVE / WAVE-RT version the version should not be changed anymore! Lots of WAVE-RT new upcoming features and enhancements can change the results!

Geometry Simplification

Delete the complex manifold and replace with simple ducts and oriffices Create an actuator and use default source to actuate the diameter to get the original backpressure

ProjectNumber

- Introduction to WAVE-RT
- WAVE Model Preparation

Results Plot Template

- Not Supported objects remodelling
- Sensors and Actuators Setting
- WAVE-RT Model
- HiL Implementation
- Conclusions

Baseline model needs to be inspected and understood before user starts any adjustments leading to RT conversion

- Ricardo uses predefined plot templates for various engines
- It is recommended to use a build log strategy naming models with _b001, _b002, ...
- Build log file should be created to include all the changes made and model dependences

Have a look at build log structure

Inspect the model and introduce yourself with the model

Have a look and check the model – recommended modelling techniques, combustion, heat transfer, FMEP, initial and boundary conditions, Parameter view, ...

Picture below shows the baseline model

5.9L IVECO Euro 3 - 2500 RPM

RICARDO

It is important to create a result plot template in WavePost to make sure that the changes applied to WAVE model won't change the resulting parameters

Run WavePost 💽 and Create following plot template:

ProjectNumber

Results Plot Template

_

_

Use Plot Manager

All major parameters

Reread = CTRL+R

- Use Multiple Properties

24

222

\$ 2.0

5 1.8-

D 1.6

1.4

304

≌₃₀₃.

\$ 302

-100 Cleane

Die Ali

INTERNAL UNAPPROVED DRAFT

3000

RICARDO

Plot Template: Page 2-5

2500

3000

Outlet pressure from compressor Comp vs. Engine speed

Pumping mean effective pressure

1000

1500

Inlet pressure to compressor Comp vs. Engine speed

04

0.2

0.0 -

-0.2 -

daMe

-0.6

-0.8 -

-1.0

0.98

304.0

303.5

303.0 -

302.5 ⊻ 302.0 ∓ 301.5

301.0 -

300.5 -300.0

31

2500

2500

3000

3000

INTERNAL UNAPPROVED DRAFT

RICARD

Plot Template: Page: 6-9

Engine speed [rpm]

2.6 Pressure in manifold

2.4

Jag 22.

520.

E 18.

1.6

1.4

2.8

2.6-

2.4

,22-

E 20-

1.8 -

16-

1.4

1000

1500

1000

3.0

2.5

INTERNAL UNAPPROVED DRAFT

It is important to plot all these plots, they give full model view – understanding!

- This template will be used during entire model conversion process
- The different builds will be plotted over each other and compared to the baseline WAVE model

• This template can be modified to fulfill particular needs

- Introduction to WAVE-RT
- WAVE Model Preparation
 - Results Plot Template
 - Not Supported objects remodelling
 - Sensors and Actuators Setting
- WAVE-RT Model
- HiL Implementation
- Conclusions

Not Supported objects remodelling

Notes to RT not supported objects

- It is recommended to use predictive Chenn-Flynn model which respects mean piston speed and Pmax for estimating of FMEP
- Need to change complex controlling strategy (boosting, PI actuators,...).

Checking the **TC moment of inertia** in
 Turbo shaft object (value corresponding to size of TC)

INTERNAL UNAPPROVED DRAFT

 Change the turbine inlet manifold from twin entry to single entry turbine respecting the volume and length of modified manifold

TC moment of inertia, twin entry – single entry turbine

The results are slightly different compared to baseline due to change in turbine entry but still satisfied

 We can expect drop in turbine effciency with single entry turbine

Multi Wiebe curves setting

- Combustion curves represented by Wiebe curves prepared in Multi Wiebe submodel.

- The new utility MultiWiebe Fit was tested (new WAVE release)
- Wiebe curves for each engine speed were set (three or four wiebe complex)

Each curve represented by A50, combustion duration, Wiebe exponent and mass fraction

Results must be comparable.

Multi Wiebe curves setting

Be carefull with mass fraction if modifying once generated wiebe curves by multi wiebe fit utility The sum of all fractions has to be equal **"1"**

Sensors and actuators

Sensors and actuators adding

- Inlet and outlet pressure and temperature sensors added
- Engine speed actuator added
- It is recommended to build new Wave Post template based on the sensor values for comparison with WAVE RT results

Fuel injectors changed to mg/inj, sensors and actuators added

Remove fuelling injectors (they are not WAVE-RT supported) and replace them by kg per injection injectors

- Add fuelling actuator in kg
 - Use Actuators_Calculation.xlsx including the actuator calculation transferring units
- Add SOI, CAC and
- Wiebe actuators controlling injection and combustion, HTVC, HTVO, engine speed and ambient control actuators

- In case of indirect injection Periodic flow rate actuators are suitable for WAVE RT conversion, where injection rate is in kg/hr.
- Therefore it is needed to manualy recalculate the value for WAVE RT from kg/hr to kg/injection

- Introduction to WAVE-RT
- WAVE Model Preparation
 - Results Plot Template
 - Not Supported objects remodelling
 - Sensors and Actuators Setting
- WAVE-RT Model
- HiL Implementation
- Conclusions

Actuators added, number for each actuator and sensor added

Add Numbers in front of each actuator and sensor

• This is done to prevent mixing the actuator and sensor list while adding additional sensors or actuator (whose will be automatically added at the end)

Expo	t WAV	E-RT		_			
ustor	nize (Dutput					
ctuat	ors S	ensors Includes Va	riables	Additional Code Initialize Function	Update Actuators Function	Update Sensors Function	Unload Function
	Type	WAVE-RT Name	Units	WAVE Element	Attribute	Export	
1	WAVE	01_act_EngineSp	rad/s	01_act_EngineSpeed	theModel.N_Eng	Y	1
2	WAVE	03_act_SOI	rad	03_act_SOI	cyl[0].Theta_SOI[0]	X	
3	WAVE	03_act_SOI	rad	03_act_SOI	cyl[1].Theta_SOI[0]	Y	_
4	WAVE	03_act_SOI	rad	03_act_SOI	cyl[2].Theta_SOI[0]	¥	
5	WAVE	03_act_SOI	rad	03 act SOI	cyl[3].Theta_SOI[0]	X	
6	WAVE	03 act SOI	rad	03 act SOI	cyl[4].Theta SOI[0]	X	
7	WAVE	03 act SOI	rad	03 act SOI	cyl[5].Theta SOI[0]	Y	
в	WAVE	02_act_Fuel	kg	02_act_Fuel	cyl[1].M_InjFuel[0]	X	
9	WAVE	02 act Fuel	kg	02 act Fuel	cyl[0].M InjFuel[0]	X	
D	WAVE	02 act Fuel	kg	02 act Fuel	cyl[5].M InjFuel[0]	x	
1	WAVE	02 act Fuel	kg	02 act Fuel	cvl[4].M IntFuel[0]	No.	8
2	WAVE	02 act Fuel	ka	02 act Fuel	cv1[3].M IniFuel[0]	X	
3	WAVE	02 act Fuel	kg	02 act Fuel	cvl[2].M IniFuel[0]	X	
4	WAVE	04 act WG act	m^2	04 act WG act	tduc[1].Awaste Turb	X	
5	WAVE	05 act amb pre	Pa	05 act amb press	cap(45).P Cap	X	
6	WAVE	05 act amb pre	Pa	05 act amb press	cap[46].P Cap	Y.	
7	WAVE	06 act T ambIn	K	06 act T ambIn	cap[45].T Cap	X	
8	WAVE	07 act diaAmbI	m	07 act diaAmbIn	cap[45].Dia ActOrif	¥	
9	WAVE	08 act diaAmbO	m	08 act diaAmbOut	cap(461.Dia ActOrif	X	
0	WAUF	09 act ChC ori		09 act CAC orif	cap[2] Dia ActOrif		
1	WAUF	14 act MM durat	rad	14 act MW durat 1	cul[1] DThera Wh[0]	N.	
2	WAUF	14 act MM dura	rad	14 act MW durat 1	cul(4) DThere Wb(0)	× 1	
2	WAUF	14 act MM dura	rad	14 act MW durat 1	cul(3) DThere Wh(0)		
4	WAUF	14 act MM dura	rad	14 act MW durat 1			
5	WAVE	14 act MW dura	rad	14 act MW durat 1	Actuate	ore	
6	WAVE	14 act Mi dura	rad	14 act MW durat 1	Actual	JI 9 🗧	
7	WAVE	15 act MM dura	rad	15 act MW durat 2			
8	WAVE	15 act MM dura	rad	15 act MW durat 2	cul[1] DThere Wh[1]	× *	
0	WAUE	15 act MV dura		15 per MV durat 2	cyl[2] DThere Mb[1]		
9	MANE	15 act MW dura	mad	15_acc_Aw_durac_2	cyr[5].Dineca_wb[1]		
1	MANUE	15 act MV dura	rau	15_acc_Aw_durat_2	cyl[5].Dineca_wb[1]		
2	MAVE	15 act MV dura	rau	15_acc_Aw_durat_2	cyr[0].Dineca_wb[1]		
2	MAVE	15 act MW dura	rau	15 acc Aw durat 2	cyl[2].Dineca_wb[1]		
	MAVE	16 acc Hw dura	rau	16_acc_Aw_durac_S	cariti'numera mpisi		
7	MAVE	16 act MW dura	au	16 sep Mil durate 2	oya(o).Dineca_WD[2]		
0	MAVE	16 act MW dura	rad	16 acc_MW_durat_3	cyr[4].Dineta_WD[2]	1	
7	MAVE	16 act MW dura	rad	16 acc_MW_durat_3	cyr[3].Dineta_WB[2]	A CONTRACTOR	
/	MAVE	16 act Mw dura	rad	16_acc_Mw_durat_3	cyr[0].Dineta_Wb[2]	A.	
0	WAVE	10_act_MW_dura	rad	16_act_Mw_adrat_3	cyr[2].Dineta_Wb[2]		
4	WAVE	1/_act_MW_dura	rad	1/_acc_Mw_durat_4	Cyr[0].Dineta_Wb[3]	i i i i i i i i i i i i i i i i i i i	
U.	WAVE	1/_act_MW_dura	rad	1/_acc_MW_durat_4	Cyr[4].DIneta_Wb[3]	ž.	
1	WAVE	17_act_MW_dura	rad	17_act_MW_durat_4	cy1[5].DIneta_Wb[3]	X.	
ć	WAVE	17_act_MW_dura	rad	17_act_MW_durat_4	Cy1[2].DTheta_Wb[3]	A CONTRACTOR	
5	WAVE	17_act_MW_dura	rad	17_act_MW_durat_4	Cyl[3].DTheta_Wb[3]	X.	
4	WAVE	17_act_MW_dura	rad	17_act_MW_durat_4	cyl[1].DTheta_Wb[3]	¥	
5	WAVE	18_act_MW_exp_		18_act_MW_exp_1	Cy1[0].C_WbN[0]	¥	
6	WAVE	18_act_MW_exp_		18_act_MW_exp_1	cy1[5].C_WbN[0]	X.	+
Export C File							
				10.67			
		ОК		Ca	ncel	H	telp

Cust	omize	Output							
Actua	ators	Sensors	Includes	Variables	Additional Code	Initialize Function	Update Actuators Function	Update Sensors Function	Unload Function
	Туре	WAVE	-RT Name	Units	WAVE E	lement	Attribute	Export	
1	WAVE	01Eng	speed	rad/s	01Engspeed		theModel.N_Eng	Y	
2	WAVE	02Tor	que	N*m	02Torque		theModel.Tq_Eng	Y	
3	WAVE	03Cy1	pressur	Pa	03Cyl_pressu	re	cyl[0].P_Cyl	Y	
4	WAVE	04p_E	xhMan	Pa	04p_ExhMan		cap[23].P_Cap	Y	
5	WAVE	OST_E:	xhMan	K	05T_ExhMan		cap[23].T_Cap	Y	
6	WAVE	06p_T	urbIn	Pa	06p_TurbIn		cap[17].P_Cap	Y	
7	WAVE	07T_T	urbIn	K	07T_TurbIn		duc[65].T_Duct	Y	
8	WAVE	08_TC	Speed	rad/s	08_TCSpeed		tduc[0].N_Turbo	Y	
9	WAVE	10_Ma:	ssflow	kg/s	10_Massflow		duc[0].W_Duct	Y	
10	WAVE	11p_C	ompIn	Pa	11p_CompIn		cap[7].P_Cap	Y	
11	WAVE	12T_C	ompin	K	12T_compIn	ł	duc[0].T_Duct	Y	
12	WAVE	13p_C	ompOut	Pa	13p_Co		cap[8].P_Cap	Y	
13	WAVE	14T_C	ompOut	K	14T_Co 56	ensors	uc[10].T_Duct	X	
14	WAVE	15p_C	ACin	Pa	15p_CA		cap[11].P_Cap	Y	
15	WAVE	16T_C	ACin	K	16T_CACin		duc[1].T_Duct	¥	
16	WAVE	17p_C	ACout	Pa	17p_CACout		cap[2].P_Cap	X.	
17	WAVE	18T_C	ACout	K	18T_CACout		duc[5].T_Duct	Y	
18	WAVE	19p_m	anifold	Pa	19p_manifold		cap[34].P_Cap	Y	
19	WAVE	20T_m	anifold	K	20T_manifold		cap[34].T_Cap	Y	
20	WAVE	23_Ma	ssflow_in	n1 kg/s	23_Massflow_	intake	duc[50].W_Duct	X	
21	WAVE	21p_T	urbOut	Pa	21p_TurbOut		cap[18].P_Cap	Y	
22	WAVE	22T_T	urbOut	K	22T_TurbOut		duc[66].T_Duct	Y	
23	WAVE	24_Ma	ssflow_e	d kg/s	24_Massflow_	exhaust	duc[65].W_Duct	Y	
24	WAVE	25_Ma:	ssflow_t	1: kg/s	25_Massflow_	turbout	duc[66].W_Duct	Y	
25	WAVE	26_FM	EP	Pa	26_FMEP		theModel.FMEP_CF	Y	
26	WAVE	27_Cy	lTemp	K	27_CylTemp		cyl[0].T_Cyl	Y	
27	WAVE	28_Cy	lHeatTrai	n: W/m^2,	28_CylHeatTr	ans	cyl[0].H_CylWall	Y	

- Introduction to WAVE-RT
- WAVE Model Preparation
- WAVE-RT Model
 - The Simplest C++ Driver Model without any Actuators
 - The Simplest Simulink Driver Model without any Actuators
 - Simulink with all actuators @ 2500rpm
 - Batch Simulink
 - WAVE-RT Model Validation
- HiL Implementation
- Conclusions

WAVE-RT conversion 1st case, C++ driver, no actuators

Prepared model template with only engine speed actuator can be used

Run !wrt_compile.bat:

- It includes compile script for 64bit platform
- Change it to 32bit if needed

Run !run_model.bat:

- It includes RT running script
- Use Rplot prepared Plot.rp file for looking at in-cylinder pressure traces
- Inspect the sensitivity on time step
 - Try time step: 10-70e⁻⁶ sec

- Introduction to WAVE-RT
- WAVE Model Preparation
- WAVE-RT Model
 - The Simplest C++ Driver Model without any Actuators
 - The Simplest Simulink Driver Model without any Actuators
 - Simulink with all actuators @ 2500rpm
 - Batch Simulink
 - WAVE-RT Model Validation
- HiL Implementation
- Conclusions

WAVE-RT conversion 1st case, Simulink Driver, No Actuators

Run Matlab and set the path to Ricardo WAVE RT

- File/Set Path/Add folder Program Files/Ricardo/WAVE/8.4/Matlab
- libraries and re-compile the model.

Open Simulink Library Browser 🚺 and build simple model using Ricardo WAVE

For detailed info see the help (slide 9)

WAVE-RT conversion 1st case, Simulink Driver, No Actuators

Using of already prepared model with only engine speed actuator activated and copy all the necessary files (*_rt.C, *.mdl)

- Re-compile the model and run it

- Introduction to WAVE-RT
- WAVE Model Preparation
- WAVE-RT Model
 - The Simplest C++ Driver Model without any Actuators
 - The Simplest Simulink Driver Model without any Actuators
 - Simulink with all actuators @ 2500rpm
 - Batch Simulink
 - WAVE-RT Model Validation
- HiL Implementation
- Conclusions

RD.13/#####.#

WAVE-RT conversion 1st case, Simulink Driver with all actuator

ProjectNumber

Actuators_table.xlsx includes all actuator values

- This is the advantage of using Constant Table values for actuating WAVE model
 - This prevents conversion units errors
- Transpose the 2500 [rpm] and paste it to Simulink model as an input matrix _

Month 2013

WAVE-RT model validation

• Model validation at one engine speed

- Introduction to WAVE-RT
- WAVE Model Preparation
- WAVE-RT Model
 - The Simplest C++ Driver Model without any Actuators
 - The Simplest Simulink Driver Model without any Actuators
 - Simulink with all actuators @ 2500rpm

Batch Simulink

- WAVE-RT Model Validation
- HiL Implementation
- Conclusions

WAVE-RT – Simulink Batch Run all cases - Subsystem for parameters calculation added

Template Simulink Batch File provided

The loop runs Simulink driven WAVE-RT model with selected number of cycles for chosen cases

Batch Simulink

Batch file saves RT_results.xls including all sensor output

WAVE-RT – Simulink Batch Run all cases - Results

- The WAVE-RT results are added into WavePost Template
 - Adjust all plots using WAVE sensors not summary variables is neccesary to be compatible what we are getting from WAVE-RT!
 - Comparison of WAVE and non-validated WAVE RT.

- Introduction to WAVE-RT
- WAVE Model Preparation
- WAVE-RT Model
 - The Simplest C++ Driver Model without any Actuators
 - The Simplest Simulink Driver Model without any Actuators
 - Simulink with all actuators @ 2500rpm
 - Batch Simulink

WAVE-RT Model Validation

- HiL Implementation
- Conclusions

WAVE-RT – Full Load and Part Load validation

User can use standard model validation techniques to match the baseline WAVE model

- Validation of boundary condition (p1C, p2T)
- **Diameters** are adjusted to match the pressures
- It is important to validate WAVE-RT model not only at full load but also at part loads, idle and motoring mode

ProjectNumber

Validated WAVE-RT model is prepared for the HiL implementation

- Transferring WAVE-RT from fluid department to C&E (Control and Electronic) department where the actual HiL implementation is done
- Major of the data from input matrix is replaced by interpolation tables

- Introduction to WAVE-RT
- WAVE Model Preparation
- WAVE-RT Model
- HiL Implementation
- Conclusions

System Layout

Key Information (1)

RTPC

- ETAS Real-Time PC (RTPC) can be installed on any PC, demo spec
 - Intel Core2 Duo @ 2.66 GHz
- Runs LABCAR-RTPC v4.0.1 HiL software running the WAVE-RT application
- 2 PCI interface
 - Meilhaus Electronic 16bit DAC, ME-6000/4, sending Cylinder pressure signals
 - Ixxat CAN interface, iPC-I XC16, to / from the rCube

WAVE-RT Engine Model

- 2I 4 Cylinder Turbocharged Diesel with EGR and Aftercooler
- WAVE-RT and rCube models developed on Intel Core2 Duo @ 2.20 GHz PC
- Running on 60 us sample time (Half of this for I/O processing)
- At least up to 4500rpm
 - RTPC sample time reduces crank resolution around this engine speed

ES4105

- VME ("Versa Module Europe") board system
- ES1130.3 Simulation controller Ethernet to RTPC
 - Sends Crank Angles
 - Receives Engine speed, temperatures, pressures etc
- PB4350DAC1.1 (on ES1651.1)
 - Analogue out, 10 ch, 14-bit resolution
 - Generates MAF, MAP to rCube
- ES1335
 - 6 signal generators for speed synchronous signals Crank, CAM, TDC
 - Up to 30,000rpm with 0.011 degCA resolution
- ES1321.1 PWM board NOT USED
- ES1336.1 Angle synchronous measurement NOT USED

Key Information (2)

RTPC – HiL Model

- The below diagram shows the model running within the RTPC
 - Grey-blocks are I/O processing and control connection to outside world (~20us required)
 - WAVE-RT runs at around 25us
 - Total step time of 60us is the sum of the two and gives some room for calculation overrun

Key Information (3)

	CPEMS rCube -	- Sp	ecification
• B E	ased on Ricardo's own flexible Rapid Prototyping ngine Management System	•	rCube Highlights – 2 * Full H Bridge or Stepper Drives with
• D M	evelopment using either ETAS ASCET or IATLAB/Simulink tool chains		diagnostics (3A and 1A) – 3 * CAN Bus 1Mbit/s
• C	alibration conducted over CCP using ETAS INCA		 3 * 100 Mbps Ethernet 2 * LinBus/RS232
• r(Cube Highlights (Base Variant 3) 6- 58V input supply Temp Range (-40/+85°C) 24 Analogue Inputs - S/W configurable 0-5V or 0-20V incl 4 'Fast' Analogue Inputs with combined max 132kHz sampling rate 24 General Purpose Digital I/O (S/W configurable in/out + pull up/pull down/no pull) 12V O/P 0-5V or 0-12V Input 4 Event triggered fast digital inputs (cause s/w interrupt) 4 Variable Reluctance Sensor or TTL level Timed Inputs 2 * 5V sensor reference voltages outputs 200mA each 16 * High (2A) and 16 Low (2A) Side Outputs with Diagnostics and Current feedback 8 * General purpose (0.5A) low side drives with diagnostics 	•	 1 * J1850 Bus 1 * ISO9141 Bus External Buffered SPI Bus Full NEXUS and BDM Ports on 565 processor, Debug and JTAG port (1149.1) on 8260. Watchdog, sensor supply and input power rail Monitoring Internal Temperature Sensor Monitor I/O 42V Tolerant Specific to this application A/D Input conditions circuit filters modified process cylinder pressure signals more effectively

- Introduction to WAVE-RT
- WAVE Model Preparation
- WAVE-RT Model
- HiL Implementation
- Conclusions

Conclusions

- This presentation briefly introduced Ricardo recommended WAVE-RT conversion process on real WAVE engine model and its HiL implementation example and scheme
- Life demos of WAVE model run vs. WAVE-RT run were performed
- WAVE-RT present state of art software code running real time or faster even on common PCs intended to be used for SiL and HiL applications

"It is hard but fun to drive a sport car!"

Appendix 1

- The WAVE-RT model can be driven by Simulink together with WAVE
- This approach can be effectively used for detailed WAVE-RT model inspection

